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one system of chains in the channels. If the chains 
are incommensurable both with the matrix and with 
each other, then there is a modulation vector for each 
system, and these vectors violate (a). In such cases, 
an interpretation similar to the dualistic one is poss- 
ible only by allowing two or more modulation patterns 
- each of them periodic in space - to act on the same 
basic structure. 

Nearly all known modulated structures, however, 
can straightforwardly be interpreted in a dualistic 
way. The type of modulation (displacement or scalar 
density variation) plays no role for the symmetry; 
displacements have to undergo the symmetry oper- 
ations of GM as vectors. Thus it is possible to visualize 
the symmetry of a modulated structure just as easily 
as that of a normal one. In particular, the lattice and 
all symmetry elements of GM can be pinpointed in 
the direct space of the crystal. If a drawing is desired, 
it suffices to superimpose the symmetry element 
figures in International Tables for X-ray Crystallogra- 
phy (1969) for GM and GB. The graphic representation 
proposed earlier by the author (de Wolff, 198 I) comes 
very close to such a superposition. 

The author is indebted to Dr T. Janssen and Pro- 
fessor A. Janner (Institute for Theoretical Physics, 
University of Nijmegen) for reading the manuscript 
and for their very helpful remarks. 
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A b s t r a c t  

Three-periodic nets are connected graphs which per- 
mit embeddings having a threefold periodicity. To 
many crystal structures such nets can be meaningfully 
assigned and used to express the topology of the 
structures. It is shown that such a net can be fully 
characterized by a finite graph in which the edges are 
labelled in a suitable way. The reversal of the process 
of assigning a labelled finite graph to a given net can 
be used to generate nets of real and hypothetical 
crystal structures in a systematic fashion. 

* T o  whom correspondence should be addressed. 

0108-7673/84/010042-09501.50 

I .  I n t r o d u c t i o n  

This exposition deals with the various ways in which 
the atoms in crystal structures may be connected to 
each other. For such a study it is convenient to use 
the language and the tools of graph theory. The rela- 
tion between a crystal structure and a graph is estab- 
lished by identifying the atoms of the structure with 
the vertices of the graph and the chemical bonds with 
the edges. Such an assignment is straightforward for 
structures in which the bonds are largely covalent. 
For structures in which ionic, metallic or van der 
Waals bonds dominate, the method to be discussed 
may still be useful, but requires an assignment of 
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bonds to pairs of atoms which may be arbitrary. If 
in a structure, for example that of a silicate, only a 
certain part is held together by covalent bonds, it is 
this part which is of interest. As an example consider 
the structure of nepheline, NaaK[A1Si3Os]4. Here the 
point of interest is the alumino-silicate framework in 
which each tetrahedral atom (silicon or aluminum) 
is connected to four oxygen atoms and each oxygen 
atom to two tetrahedral atoms. In assigning a graph 
to this framework a certain simplification is possible: 
It is sufficient to assign vertices to the tetrahedral 
atoms only and to connect two such vertices by an 
edge whenever the corresponding tetrahedral atoms 
are connected via an oxygen bridge. Such simplifica- 
tions will be made in the case of all the silicates which 
are mentioned here. 

The discussion will focus on certain types of graphs 
which are of particular interest: These are the three- 
periodic connected graphs which will also be called 
three-periodic nets. [Wells (1977) uses the term three- 
dimensional nets.] A systematic nomenclature for 
three-periodic nets has, to the knowledge of the 
authors, not yet been developed. The enumeration of 
such nets has been a subject of interest for some time. 
Including the procedure to be presented here three 
principal methods may be distinguished: 

(a) The orbit method: The orbit of a point under 
all operations of a three-dimensional space group is 
formed. All pairs of points of the orbit which are less 
than a specified distance apart are then connected by 
a line. For literature on this method which is related 
to the construction Of homogeneous sphere packings 
see Fischer (1973, 1982). 

(b) The aufoau method: This name is given to 
methods in which more complex three-periodic nets 
are built up from simpler nets. This may be done, for 
example, by substituting a triangle graph K3 for a 
trivalent vertex or a tetrahedron graph g 4 f o r  a quad- 
rivalent vertex (Heesch & Laves, 1933). The method 
may also involve an increase in the periodicity of the 
net when, for example, a three-periodic net is con- 
structed by interconnecting two-periodic nets. Such 
methods have been used by Wells (1977, 1979) and 
have been extensively applied by Smith and co- 
workers (see Smith & Bennett, 1981). Regarding crys- 
tal structures as sets of interconnected layers is a 
viewpoint which has been advanced by Lima-de-Faria 
and Figueiredo (Lima-de-Faria & Figueiredo, 1976; 
Figueiredo, 1982). 

(c) The vector method: This is the method pre- 
sented here, so-called because it makes use of index 
triples which may be identified with vectors. It is in 
part based on a combinatorial method by Chung & 
Hahn (1975, 1976); see also Chung, Hahn & Klee 
(1983). 

Other methods do not fit into a simple scheme 
because they are not free from intuition. To these 
belong certain procedures employed by Wells (1977, 

1979) who did much to advance our knowledge of 
three-periodic nets. 

2. Definitions 

Only graph-theoretical terms which are of special 
importance in this context or which are not generally 
established will be defined here. Definitions of the 
others can be found in Harary (1969) or other books 
on graph theory. In contrast to Harary the terms 
vertices and edges are used here for the elements of 
a graph. Space means Euclidean space. 

A graph is simple if it has no loops or multiple 
edges. 

A graph is n-regular (n- -0 ,  l, 2 , . . . )  if all of its 
vertices are n-valent, i.e. are of degree n. 

A graph is a net if it is connected and has infinitely 
many cycles. 

A graph is a tree if it is connected and has no cycles. 
A subgraph of a given graph is a spanning tree of 

that graph if it is a tree and contains all the vertices 
of the graph. 

An embedding of a graph in n-dimensional space 
(n- -0 ,  l, 2 , . . . )  is a representation, in that space, of 
its vertices by points and of its edges by straight lines 
such that the incidence relations are preserved and 
no two lines intersect. 

A graph is n-dimensional (n = l, 2, 3 , . . . )  if it can 
be embedded in n-dimensional space such that the 
distance between any pair of points is finite and if 
such an embedding is not possible in a space of lower 
dimension. The graph K~ consisting of a single vertex 
is the only graph which can be embedded in zero- 
dimensional space and is called zero-dimensional. 

A graph is n-periodic (n- -1 ,  2, 3 , . . . )  if it can be 
embedded in space of sufficiently high dimension in 
such a way that among the isometric symmetry oper- 
ations of the embedding there are translations in n, 
but for no such embedding there are translations in 
more than n independent directions. A graph which 
is not n-periodic is zero-periodic. 

Two points of an embedding are translationally 
equivalent if there is a translation which maps one of 
the points onto the other and brings the embedding 
into coincidence with itself. A class of points which 
are equivalent with respect to all translations of an 
embedding is called a point lattice (more exactly an 
n-dimensional point lattice if there are n, but not 
more than n, independent translations). A line lattice 
is similarly defined for the lines connecting pairs of 
points of the embedding. 

3. Quotient graphs 

Consider an embedding of a three-periodic net in 
three-dimensional space. It will always be assumed 
that such an embedding is one of maximal transla- 
tional symmetry, i.e. one with the smallest possible 
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number of point lattices. Then a finite graph may be 
assigned to the three-periodic net via the given 
embedding as follows: 

(a) The point lattices P~, P2 , . . . ,  Pp are mapped 
onto the vertices P~, P2 , . . . ,  Pp of the finite graph. 

(b) The line lattices are mapped onto the edges of 
the finite graph. This is done in such a way that a 
lattice of lines connecting the points in P~ with the 
points in Pj is mapped onto an edge incident with 
the vertices P~ and Pj. 

In (b) the special case P~ = Pj causes the vertex P; 
to become incident with one or more loops. This 
occurs whenever a point in lattice Pi is connected to 
other points in the same lattice. If P; # Pj and if there 
is more than one lattice of lines connecting points of 
P~ with points of P), then there will be a multiple edge 
incident with vertices P~ and Pj. So the finite graph 
is in general not simple. 

The finite graph may be considered as the image 
of the three-periodic net under the mapping described 
above which makes use of a given embedding. Since 
this process is reminiscent of the mapping of a group 
onto one of its factor groups or quotient groups, the 
finite graph will be called the quotient graph of the 
three-periodic net with respect to the given embedding 
or, if there is no ambiguity, simply the quotient graph 
of the three-periodic net (the term factor graph has a 
different and well-defined meaning in graph theory). 
The mapping preserves certain properties of the three- 
periodic net like the valency of the vertices, but other 
information is lost. This is illustrated in Fig. 1 which 
shows that two non-isomorphic three-periodic nets 
may yield isomorphic quotient graphs. 

4. Nomenclature for three-periodic nets 

The assignment of a quotient graph to a three-periodic 
net, via a given embedding, is in general accompanied 

L 

1 

Fig. 1. Two non-isomorphic three-periodic nets with isomorphic 
quotient graphs. The upper net is that of mono-Ca[Al2Si208] 
and the lower one that of Rb[AISiO4] (see Smith, 1977). 

by a loss of information. In particular, while it is still 
known which point lattices are connected to each 
other by how many lattices of lines, it is not known 
anymore which individual point is connected to which 
other point. This information can be restored by a 
suitable system of labelling the edges of the quotient 
graph. Consider a three-periodic net and its quotient 
graph with respect to a given embedding. For each 
point lattice P; of the embedding a coordinate system 
is introduced which consists of an origin and three 
basis vectors. Each lattice is given its own origin, but 
the basis vectors are chosen common to all of the 
lattices. As origin in the lattice Pi an arbitrary point 
is taken and labelled P;(000). As basis vectors three 
linearly independent translation vectors a, b and c 
are chosen such that each translation vector is an 
integral linear combination of these. An arbitrary 
point of the embedding may then be identified by a 
symbol such as Pi(rst), where the index i refers to 
the ith point lattice and the indices r, s and t indicate 
that the vector from the origin P,(000) to the point in 
question is ra + sb + tc. 

The system of labelling the edges of the quotient 
graph will now be discussed. Consider an edge of 
this graph which is incident with vertices P, and Pj. 
This edge is the image of a lattice of lines of the 
embedding which connect points of lattice P, with 
points of lattice Pj. Assume that an arbitrary rep- 
resentative of the lattice of lines connects a point 
P~(rst) with point Pj(uvw). In the quotient graph an 
arrow is then assigned to the corresponding edge, 
pointing from vertex P, to vertex Pj, and the edge is 
labelled with the index triple u - r ,  v - s ,  w - t .  The 
special case i = j  (loop) is treated in the same fashion. 
The labelling of the edges of the quotient graph is 
continued until all the edges are exhausted. It follows 
from the construction that the embedding of the three- 
periodic net is uniquely determined by the labelled 
quotient graph together with the coordinate systems. 
The three-periodic net itself is determined, up to 
isomorphism (in the graph-theoretical sense), by the 
labelled quotient graph alone, because different 
choices of coordinate systems cannot affect the way 
in which the points are connected to each other. Since 
the index triples may be identified with triples of 
vector coefficients the procedure just outlined will be 
called the vector method of symbolizing three-periodic 
nets. 

A few conventions help to simplify the nomen- 
clature of the quotient graph: Since the two ends of 
a loop cannot be distinguished, the reversal of the 
direction of an arrow on a loop cannot result in the 
labelling of a different three-periodic net. It follows 
that an arrow on a loop can be dispensed with 
altogether. Similarly, reversing the direction of an 
edge labelled 000 does not lead to a different net. 
Thus, arrows on such edges are likewise superfluous. 
Also, the convention will be adopted not to write 
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indices 000, i.e. to leave an edge unlabelled if it is 
associated with the index triple 000. In Fig. 2 it is 
shown how such a labelled quotient graph is obtained 
from an embedding of the three-periodic net of mono- 
Ca[A12SiaO8]. 

In cases where a representstion of the labelled 
quotient graph by a drawing do, s not appear accept- 
able (e.g. when computer stor ige is desired), the 
quotient graph with its labelling can also be given in 
matrix form or in the form of some other tabular 
arrangement. 

5. Equivalences 

Whereas a labelled quotient graph uniquely deter- 
mines a three-periodic net up to isomorphism, the 
labelling itself is not uniquely determined by the 
three-periodic net. There may be several labellings 
describing isomorphic three-periodic nets, depending 
on the choice of the coordinate systems and other 
factors. Two labellings will be called equivalent when 
they determine isomorphic three-periodic nets. In the 
following the various operations which lead to 
equivalent labellings of a given labelled quotient 
graph will be discussed. 

(a) Reversal of the direction of an arrow accom- 
panied by an inversion of the indices, i.e. by changing 
the indices rst to Fgr, where the bars stand for minus 
signs. 

(b) Change of coordinate system. 
Change of  basis vectors: Let there be a change from 

the basis vectors a, b, c to new basis vectors a', b', c' 
and let, in matrix notation, 

/ g l l  gl2 g13~ 

(a',b',c')=(a,b,c){g2l g22 g23/. 

\g3! g32 g33/ 

P~ (liO}~P1 (I00} 

Ca) 

(OLO) 

(OLO) 

) 

PI - 010 _ R 

A T/A 
1°° 1 /% V101 

P2 (b) -% 

Fig. 2. Labelling the quotient graph of a three-periodic net. (a) 
Embedding and coordinate systems for the mono-Ca[AlzSi2Os] 
net. Dotted and open circles indicate perpendicular lines upward 
and downward, respectively. (b) The labelled quotient graph. 

Let the index triple rst change to r's't'. Since only 
the reference system has been changed and not 
the embedding, it follows from r a + s b + t c =  
r'a' + s'b' + t'c' that 

(r) g2 g3 (i ) 
s' = g21 g22 g23 / 

t ' g31 g32 g33/ 

Change of  origin: Consider, in the labelled 
quotient graph, an edge rst running from vertex Pj 
to vertex Pj. Let there be, in the coordinate system 
for the point lattice Pi of the embedding, a 
change of origin from point Pi(000) to point 
Pi(0'0'0') -- Pi(lmn), where the indices Iron refer to the 
old system. Any point Pi(uvw) in the old system must 
then be re-labelled P~(u- l, v - m ,  w - n )  in the new 
system. Similarly, let there be a change of origin in 
the point lattice Pj, from point Pj(000) to point 
Pj(0'0'0')--Pj(opq). This entails a re-labelling of the 
point Pj(xyz) to Pj(x - o, y - p, z - q). Under the map- 
ping of the embedding onto the quotient graph pre- 
cisely those lines of the embedding which run from 
points Pi(uvw) to points Pj(xyz) are mapped onto the 
(P. Pj) edge rst for which x - u = r, y - v = s, z - w = t. 
It follows that the edge rst must be re-labelled 

r t~  

s t=  

t r=  

Combination of  both: 
possible to express by a 
the change of both basis 
( Pi, Pj) edge rst one obtains 

r - o + l  

s - p + m  

t - q + n .  

By using 4 × 4 matrices it is 
single equation the effect of 
vectors and origins. For the 

(ri) (cg g2 g3)it( ) S' g21 g22 g23 r = m - p  

g31 g32 g33 /1 

0 0 0 

where r', s' and t' are the new indices and where the 
meaning of the other symbols is as before. The vertical 
and horizontal lines in the matrices serve merely as 
a guide to the eye and have no other meaning. 

(c) Performance of an automorphism of the 
quotient graph: The concept of an automorphism, 
generally defined as an adjacency-preserving permu- 
tation of the vertices, is extended here to include the 
permutation of loops which are incident with the 
same vertex and the permutation of edges which are 
incident with the same pair of vertices. Obviously the 
performance of such an automorphism of the labelled 
quotient graph leads to an isomorphic three-periodic 
net. 

All the operations discussed above are illustrated 
in Fig. 3. 
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6. Generation of three-periodic nets: principles 

The process of generating three-periodic nets is essen- 
tially a reversal of the vector method of symbolizing 
three-periodic nets which has been outlined in § 4. It 
will therefore be called the vector method of generating 
three-periodic nets. It is carried out in three or four 
steps as follows. 

(a) Generation of all connected graphs with a given 
number of vertices of  specified valence 

The graphs serve as quotient graphs for the three- 
periodic nets to be generated and may therefore have 
loops and multiple edges. 

(b) Labelling of the quotient graphs 
This means the assignment of an index triple to 

each edge and the assignment of a direction to those 
edges which are not loops and to which the index 
triple 000 has not been assigned. (Recall the conven- 
tion to leave the latter type of edges unlabelled.) The 
following instructions guarantee that the labelling of 
the quotient graph does indeed define a three-periodic 
net. 

(i) Select, in the given quotient graph, a spanning 
tree and assign to its edges the index triple 000, i.e. 
leave the edges unlabelled. One such choice of span- 
ning tree suffices to generate all of the three-periodic 
nets which meet the conditions outlined below. Recall 
that each vertex of the quotient graph stands for a 
point lattice in an embedding of the three-periodic 
nets to be generated and that each edge of the quotient 
graph stands for a lattice of lines. From each point 
lattice of the embedding and from those line lattices 
which are associated with the edges of the spanning 
tree select one representative in such a way that the 

010 

(a) 

010 010 

(b) (c) 

010 

(d) (e) 

Fig. 3. Equivalent labelled quotient graphs. (a) Labelled quotient 
graph as in Fig. 2(b). (b) Reversal of a direction with re-labelling 
rst -~ ~gl. (c) Change of basis vector e to c'= a +c. (d) Change 
of origin point P4(000)to P4(0'0'0')= P4(010). (e) Automorphism 
induced by the permutation (P~ P4)(P2P3). 

selected points and lines form a tree themselves. Take 
the points of this tree as origin points P~(000), 
P2(000), . . . ,  Pp(000) for the different point lattices. 
From this choice it follows that the edges of the 
spanning tree of the quotient graph are to be assigned 
the index triples 000. 

(ii) Assign indices rst (with 000 not being excluded) 
and, where applicable, arrows to the remaining edges, 
subject to the following restrictions. 

(a) r,s, t6{-1 ,O,  +l} 

This is an arbitrary restriction which guarantees that 
only a finite number of three-periodic nets can be 
generated from a given quotient graph. Generation 
is thereby restricted to those three-periodic nets which 
permit an embedding and a choice of a primitive unit 
cell for this embedding such that the origin points 
P~(000), P2(000), . . . ,  Pp(000) all lie in the cell and are 
connected only to points in the same or in neighbour- 
ing cells (a neighbouring cell is a cell which has at 
least one point of the Euclidean space in common 
with the given cell). The nets which are excluded are 
therefore not likely to be those of real crystal struc- 
tures. 

(/3) Choose index triples for loops which are 
different from 000. 

This is in order to avoid loops in the three-periodic 
nets. 

(y) Choose index triples for multiple edges such 
that for each pair of edges of a multiple edge the sum 
of the index triples is different from 000 when the 
orientation of the edges is antiparallel or, when the 
orientation is parallel, such that the difference is 
unequal to 000. 

This is in order to avoid multiple edges in the 
three-periodic nets. 

(8) Ensure that among the index triples rst there 
is at least one with r ~ 0, at least one different one 
with s ~ 0, and a third one with t # 0. 

This is in order to avoid a lower than threefold 
periodicity for the nets to be generated. 

(c) Partitioning the set of labelled quotient graphs into 
equivalence classes 

Using the criteria given in § 5 the labelled quotient 
graphs should be tested for possible equivalences 
and assigned to equivalence classes. From each 
equivalence class one representative may then be 
selected. When testing for equivalence it may be 
found that a quotient graph which is labelled in 
accordance with the established rules is equivalent to 
one which is labelled in contradiction to them. Such 
an equivalence is the consequence of restricting the 
indices to the integers -1 ,  0 and +l  by using argu- 
ments based on the concept of a unit cell: Whether 
two adjacent points lie in the same or in neighbouring 
unit cells or do not may depend on the way in which 
the unit cell has been chosen. 
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(d) Embedding the three-periodic nets 
Although the three-periodic nets are already 

determined after execution of step (c) it may still 
be desirable to construct embeddings of the nets in 
three-dimensional space. After having chosen p origin 
points, one for each vertex of the labelled quotient 
graph, as well as three basis vectors, the p point 
lattices can be drawn. Then the straight lines are 
added in accordance with the labelling of the quotient 
graph. It may be found that with a particular choice 
of coordinate systems an embedding is not possible 
because of intersecting lines. Such a situation can 
always be remedied by a suitable displacement of 
certain points of the embedding (which may necessi- 
tate a lowering of translational symmetry). 

7. Generation of three-periodic nets: examples 

For purposes of illustration some three-regular three- 
periodic nets with quotient graphs of order six will 
be generated. The generation follows the pattern 
established in § 6. 

(a) The first step is the calculation of all three- 
regular graphs with six vertices which are to serve as 
quotient graphs for the three-periodic nets to be gen- 
erated. The resulting 17 graphs are shown in Fig. 4. 
A discussion of their calculation is beyond the scope 
of this paper. 

(b) and (c) Let quotient graph no. 1 be selected for 
further consideration. The task is to label its edges 
and then to check for equivalent labellings. The choice 
of a spanning tree is indicated by the heavy lines in 
Fig. 5(a). Each of the four remaining edges is then 
to be labelled with index triples rst, where r, s, t 
{ -1 ,0 ,  +1}. Recall that there must be at least one 
index triple with r # 0, a second one with s # 0, and 
a third one with t # 0. Consider all sets of four such 

1 

11 12 

Table 1. Non-equivalent sets of  four index triples to be 
used for labelling quotient graphs with s + 4 edges, where 

s is the number of  edges of  a spanning tree 

{lOO, OlO, OO1,OOO} 
{100,010,001,100} 
{1oo, o]o, oo1,ioo} 
{100,010,001,110} 

_ _  

{100,010,001,110} 
{100,010,001,111} 
{100,010,001,111} 

_ _ _  

{lO0, OlO, O01,111} 

triples and let two sets belong to the same class when 
they can be transformed into each other by a change 
of basis vectors. It will be found that there are eight 
classes. From Table 1, which lists one representative 
from each class, the first quadruple 100, 010, 001,000 
is arbitrarily selected. There are 4! = 24 ways of dis- 
tributing four index triples among four edges and, 
for each such choice, 2 3 = 8 ways of assigning direc- 
tions to the three edges not labelled 000. It will not 
be necessary to go through all these possibilities, as 
the high symmetry of the quotient graph permits a 
much simplified approach: Since edges (PI, P4) and 
(/:'3,/)6) of the quotient graph are equivalent with 
respect to an automorphism which leaves the span- 
ning tree invariant, there are only three non- 
equivalent ways of assigning the index triple 000 to 
one of the four edges in question. The remaining 
index triples 100, 010 and 001 can then be distributed 
at will, since they are all equivalent with respect to 
suitable basis transformations. This holds true also 
for the assignment of the arrows. The three labelled 
quotient graphs shown in Figs. 5(b), (c) and (d) are 
thus obtained. Each of these defines a different three- 
regular three-periodic net. 

(d) Embeddings of the nets in space will now be 
drawn. To this end three basis vectors and six origin 
points are chosen for each of the three labelled 
quotient graphs in Fig. 5 in such a way that the 

/V/k 
(a) 

13 1 15 

(b) (c) (d) 

Fig. 4. The 17 three-regular graphs of order six. 

Fig. 5. Generation of three-periodic nets. (a) The quotient graph 
(with a spanning tree indicated by heavy lines). (b), (c) and (d) 
Three labellings of the quotient graph which define non- 
equivalent three-periodic nets. 
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embeddings exhibit the maximal possible symmetry. 
The embeddings are shown in Figs. 6(a), (b) and (c). 
The first net is Archimedean, in the nomenclature of 
Wells (1977); and is identical with the net 6 x 122 on 
p. 83 of Wells (1977). The space group of the embed- 
ding is R3rn. The second and third nets are neither 
Platonic nor Archimedean and are not listed by Wells. 
The space groups of the embeddings are I4m2  and 
Cm, respectively. For both embeddings it holds that 
of the six points in a primitive unit cell four are of 
the type 4 × 1 2  2 and two of the type 12 3. 

8. Generation of three-periodic nets: applications 

The vector method is the only procedure known to 
the authors which permits a straightforward gener- 
ation of three-periodic nets with quotient graphs of 
a given order. The restrictions which were imposed 
on the integers to be used for labelling the edges of 
the quotient graphs were arbitrary and can be 
modified or supplemented at will. 

For quotient graphs of sufficiently low order it may 
happen that after the choice of the spanning tree there 
remain just three edges for further labelling. To these 

! 
(a) 

< 
(b) 

(c) 

Fig. 6. Embeddings of the three-periodic nets defined by the label- 
led quotient graphs in Fig. 5 (stereo pairs). (a) Embedding of 
net (b) with symmetry R3m. This is the Archimedean 6 x 122 net 
listed by Wells (1977, p. 83). (b) Embedding of net (c) with 
symmetry [4rn2. (c) Embedding of net (d) with symmetry Cm. 

edges three independent directions must be assigned. 
Since all sets of three independent index triples are 
equivalent it follows that each such quotient graph 
yields only one three-periodic net. This happens, for 
example, in the case of the five three-regular quotient 
graphs of order four. There are thus five three-regular 
nets with quotient graphs of this order, i.e. five three- 
regular nets which permit embeddings with four 
points per unit cell. Note that in each case the unit 
cell is primitive, because the assumption of a centered 
unit cell with four points would imply the existence 
of a primitive cell with fewer points and this is not 
possible with three-regular three-periodic nets. 

It will be found that the number of quotient graphs 
as well as the number of three-periodic nets to be 
generated from a given quotient graph increases enor- 
mously with the order of the quotient graph. For 
specific applications, however, only certain types of 
three-periodic nets may be of interest, for example 
those derived from vertex-transitive or edge-transitive 
quotient graphs, these being quotient graphs in which 
all vertices or all edges are equivalent with respect to 
an automorphism of the (unlabelled) graph. Such 
quotient graphs are much more limited in number. 
Of the 17 quotient graphs illustrated in Fig. 4 the first 
is both vertex and edge transitive, while nos. 2 and 
6 are vertex but not edge transitive. All the others are 
neither vertex nor edge transitive. 

The principal motive for generating three-periodic 
nets comes from the relationship of their embeddings 
with real or hypothetical crystal structures. There are 
classes of crystal structures for which certain bond 
lengths or angles are typical. Embeddings which are 
to be associated with such structures should display 
these lengths and angles. It is therefore of interest to 
know whether a given three-periodic net is capable 
of such an embedding or not. Refinement methods 
like the distance least-squares method of Meier & 
Villiger (1969) may be of help in answering this 
question. 

9. Limitations 

It may be asked why the relations between three- 
periodic nets and quotient graphs have been defined 
with the aid of embeddings of the nets and why a 
purely graph-theoretical method which side-steps the 
embeddings has not been used. The answer is that 
there are nets to which a quotient graph cannot be 
assigned in a unique way by using graph-theoretical 
considerations alone. These are the nets which allow 
two or more embeddings with non-isomorphic 
quotient graphs. The different cases which may occur 
are illustrated in Fig. 7. Recall that only embeddings 
with maximal translational symmetry are considered. 
Embeddings which yield the same partitioning of the 
points into point lattices may be called equivalent. 
The example in Fig. 7(a) is the SCCSCC net of Smith 
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(1977). In Fig. 7(b) a non-equivalent embedding is 
obtained from the given one by interchanging two 
monovalent points with a common neighbour. The 
case illustrated in Fig. 7(c), in which non-isomorphic 
quotient graphs are obtained from different embed- 
dings, is supposedly rare. It does not invalidate the 
vector method, but calls for a certain caution: From 
the fact that two three-periodic nets have non-isomor- 
phic quotient graphs (even if these are of the same 
order) it cannot be inferred that the nets themselves 
are non-isomorphic. 

Note that the automorphism group of a net which 
permits non-equivalent embeddings cannot be 
isomorphic to a space group with its uniquely deter- 
mined translation subgroup. It follows that for a net 
with an automorphism group which is isomorphic to 
a space group all embeddings are equivalent. These 
nets, which are the most important ones, have a 
uniquely defined quotient graph. The example in 
Fig. 7(b) shows that the above-mentioned group 
isomorphism, while being sufficient, is not a necessary 
condition for the existence of a unique quotient graph. 

10. Extensions 

The vector method of symbolizing and generating 
three-periodic nets can be easily extended to one- 
and two-periodic nets or indeed to nets of any perio- 
dicity greater than zero. Fig. 8 gives examples of one-, 
two- and four-periodic nets and their labelled 
quotient graphs. For simplicity of nomenclature a net 
with a quotient graph of order n may be called a net 

o f  order n. Extending the arguments given in the 
second paragraph of § 9 to four-dimensional space 
leads to the result that there are 17 three-regular 

(a) 

(c) 

(b) 

p.- 

Fig. 7. Possible relations between nets, their embeddings (of high- 
est translational symmetry) and the corresponding quotient 
graphs. (a) All embeddings of this net lead to the same partition- 
ing of the set of points into point lattices. The quotient graph 
is uniquely defined. (b) Different embeddings of this net may 
lead to different partitionings of the set of points into point 
lattices. The quotient graph is nevertheless uniquely defined. (c) 
Two embeddings of the same net load to different partitionings 
of the set of points into point lattices. The quotient graphs are 
not isomorphic. 

four-periodic nets of order six, one for each quotient 
graph in Fig. 4. Likewise there are four four-regular 
four-periodic nets of order three, there are three five- 
regular four-periodic nets of order two, and there is 
one eight-regular four-periodic net of order one. The 
order of a net, as defined above, is the number of 
points per unit cell of an embedding of highest trans- 
lational symmetry. In the examples just listed all the 
orders refer to primitive unit cells, because lower 
orders than the ones given are not compatible with 
the specified regularity and periodicities. 

Further extensions of the vector method will be 
dealt with in a forthcoming publication, where it will 
be shown how three-periodic nets can also be mapped 
into one- and two-periodic graphs by identifying not 
all of the translationally equivalent points, but only 
those which are equivalent with respect to a certain 
subgroup of the group of all translations. 

SJC and ThH are indebted to the Deutsche For- 
schungsgemeinschaft (DFG) for support of this work. 
WEK expresses his gratitude to Professor A. F. Wells 
(Storrs, Connecticut) for a stimulating and fruitful 
discussion. All authors thank Dr H Behm (Karlsruhe) 
for drawing the stereo figures. 
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Fig. 8. Graphs of various periodicities and their labelled quotient 
graphs. (a) A one-periodic three-dimensional four-regular graph. 
(b) A two-periodic two-dimensional three-regular graph. (c) A 
four-periodic four-dimensional three-regular graph. From dotted 
and open circles there are lines going in the [0001] and [0001] 
directions, respectively. 
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Abstract 
Some very large biological macromolecules, such as 
viruses, exhibit a high degree of non-crystallographic 
symmetry. A method is described to refine crystal- 
lographically such large structures using a combina- 
tion of molecular averaging in real space, automatic 
real-space refitting and interactive refitting using com- 
puter graphics. The method has been successfully 
applied to a small plant virus, satellite tobacco 
necrosis virus, containing 11 700 amino acids in the 
crystallographic asymmetric unit. The starting model 
for the refinement was built with 3-7 A phases. These 
have been refined and the resolution extended to 
2.5A. 

Abbreviations used in the text: STNV satellite 
tobacco necrosis virus, SBMV southern bean mosaic 
virus, TBSV tomato bushy stunt virus, FFT fast Four- 
ier transform, n.c.s., non-crystallographic symmetry. 

Introduction 
The first macromolecules to be crystallographically 
refined were small proteins containing about fifty 
amino acids in the asymmetric unit. Rubredoxin was 
refined using difference-Fourier and reciprocal-space 
least-squares methods (Watenpaugh, Sieker, Herriot, 
& Jensen, 1973), and pancreatic trypsin inhibitor by 
cyclic application of real-space refinement (Deisen- 
hofer & Steigemann, 1975; Diamond, 1971). Since 
then reciprocal-space refinement has been improved 
by introducing extra observations in the form of 
restraints to bond lengths, angles etc. (Konnert, 1976; 
Hendrickson & Konnert, 1980), by using constraints 

and elastic restraints (Sussman, Holbrook, Church & 
Kim, 1977), and by the use of FFT methods (Agarwal, 
1978; Jack & Levitt, 1978). These methods are not 
automatic and require manual intervention at various 
stages. Fortunately, this aspect has been greatly sim- 
plified by the use of computer graphics systems such 
as FRODO (Jones, 1982) and BILDER (Diamond, 
1982). It is now possible to refine successfully protein 
molecules containing 750-800 residues in the asym- 
metric unit. However, it is still very difficult and time 
consuming to build and refine macromolecules start- 
ing from maps that are poorly phased with data 
extending to 3.0-3-5 A resolution. This requires a lot 
of manual intervention and many cycles of refinement 
[e.g. the immunoglobin Fc fragment refined by 
Deisenhofer (1981)]. 

Many interesting macromolecules contain multiple 
copies of a protein subunit. Viruses in particular 
contain many copies of a single polypeptide chain. 
Three spherical plant viruses have been extensively 
studied by X-ray crystallography, STNV, TBSV and 
SBMV (Liljas et al., 1982; Harrison, Olson, Schutt, 
Winkler, & Bricogne, 1978; Abad-Zapatero et al., 
1980). All three have icosahedral symmetry. In the 
classification of Caspar & Klug (1962) STNV is of 
the simplest T = 1 type, possessing exact icosahedral 
symmetry and therefore having 60 identical subunits 
in its protective coat. It turns out that when STNV 
crystallizes the asymmetric unit is the complete virus 
particle. Both TBSV and SBMV are T =  3 particles 
with 180 subunits making up the particle. When they 
crystallize some of the icosahedral symmetry elements 
become space-group symmetry elements so that TBSV 
has 15 and SBMV 30 protein subunits in the crystallo- 
graphic asymmetric unit. 
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